
Advanced C Programming
Memory, Code Review, Matching Replacement Resolution,

Multi-Platform Code Management

Sebastian Hack
hack@cs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

Winter Term 2008/09

computer science

saarland
university

1

Memory Management

Own Memory Management May Pay Off

Memory Management Example Time (s) Clauses

Own Module ALG196+1 560 254819

Standard ALG196+1 689 254819

Conclusion

I about 20% faster

I own module can be faster when many small objects are involved and
it is well done

2

Example1: Code Organization

Meaningless Loop

do {

/* Here is the DPLL main algorithm */

/* manipulating "finished" */

} while (! finished);

Guidelines

I code meaningful statements

I reflect abstract algorithm

4

Example2: Standard Data Structures

Non-Standard Lists

typedef struct LIST_HELP {

int elem;

int guessed;

struct LIST_HELP* next;

} LIST_NODE;

typedef LIST_NODE* LIST;

/* *** */

/*This is the structure to implement linked lists where */

/*elem is the content of the current list node */

/*next is the pointer to the next element , possibly NULL */

/* *** */

Guidelines

I documentation is part of programming

I do not abuse standard notions

6

Example3: Efficiency

Lists for Assignments

else { /* part of the DPLL mainloop */

/* guess a literal and add it to M */

DBG((MOD_SOLVER ,3," guess %d\n",undefined_literal));

list_add (&M,undefined_literal ,1);

inished = 0;

break;

}

Guidelines

I dealing with memory is expensive

I prefer assignment over address operator

I if the size of a structure is a priori constant implement it that way

8

Example4: Efficiency & Encapsulation

Clause Set Evaluation

/* part of the main DPLL loop */

for (i = 0; i<clauses_count; i++) {

undefined_count = 0;

undefined_literal = 0;

/* evaluate each clause */

/* clause set is an array of clauses */

/* a clause is a list of literals */

for (clause = N[i]; clause != NULL;

clause = clause ->next) {

/* check if clause is true under M */

if (list_contains(M, clause ->elem) == 1) {

Guidelines

I meaningful encapsulation

I think careful of operations/datastructures

I two literal algorithm improves (hopefully)

10

Example5: User Interface

SAT Solver Usage

lecture/ex2 > ./SAT

ERROR: No file name given

USAGE: ./SAT <cnf -file >

./SAT -h

lecture/ex2 > ./SAT -h

SAT solver for CNF formulas using the DPLL algorithm

USAGE: ./SAT <cnf -file > [OPTIONS]

./SAT -h

Options:

-h Print this help screen and exit

lecture/ex2 >

Guidelines

I deliver useful information

12

Example6: Memory & References

Economical Memory Usage

typedef struct LIST_HELP {

struct LIST_HELP * next;

struct LIST_HELP * prev;

void * data;

} LIST_NODE;

typedef LIST_NODE * LIST;

typedef struct CLAUSE_HELP {

LIST literals;

LIST watch [2];

} CLAUSE_NODE;

14

Example6: Ctd.

References

typedef struct LITCOUNT {

int cnt_pos;

int cnt_neg;

int literal;

int rev_idx;

} LITCOUNT;

typedef struct LITERALS_HELP {

int size;

int capacity;

long * data; /* Array with literals */

LITCOUNT * count;

LIST * clauses;

} LITERALS_NODE;

typedef LITERALS_NODE * LITERALS;

Guidelines

I less memory consumption typically means faster code

I draw ASCII picture of structures with references

16

Example7: Filenames

Source Files

lecture/ex3 > ls

algorithm.c datastructures.c debug.c Makefile

memory.h misc.h parser.h parser_main.h

algorithm.h datastructures.h debug.h memory.c

misc.c parser.c parser_main.c

lecture/ex3 >

Guidelines

I assign meaningful names to files

18

Example8: #ifdef

Function Definition

#ifndef TWO_WATCH

struct VAL* solveSAT(struct VAL *val , struct CNF *cnf)

#else

struct VAL* solveSAT(struct VAL *val , struct CNF *cnf ,

struct WATCH_LIST* wl)

#endif

{

#ifndef TWO_WATCH

int unitLiteral;

/* continues ... */

Guidelines

I don’t use #ifdef for version control

I don’t use #ifdef for platform differences

I use #ifdef sparingly

20

Example9: Efficiency

Pick Next Undefined Variable

int pickUndefinedVariable(struct VAL *val , struct CNF *cnf)

{

for (i=0; i < cnf ->numberOfVariables; ++i)

{

/* grab literal */

while (valLit != NULL)

{

/* check if defined */

valLit = valLit ->next;

}

}

return result;

}

Guidelines

I has to be done in (almost) constant time

22

Efficient SAT Implementation

Hints

I no call to malloc after input phase, i.e., during search

I prefer arrays over lists

I push crucial operations to constant time (if possible)

I profile

23

Merging Replacement Resolution: Theory

Definition: Resolution

From C1 ∨ L and C2 ∨ ¬L conclude C1 ∨ C2.

Definition: Merging Replacement Resolution

Consider two clauses C1 ∨ L and C2 ∨ ¬L such that C1 ⊆ C2. Then
replace C2 ∨ ¬L with C2.

Examples

I Replace P ∨ Q by P in the presence of P ∨ ¬Q

I Replace P ∨ ¬Q ∨ ¬R by P ∨ ¬Q in the presence of ¬Q ∨ R

24

Merging Replacement Resolution: Implementation

Hints

I Given a literal L find fast ways getting all clauses containing ¬L

I Given two clauses C1 ∨ L, C2 ∨ ¬L find constant time criteria for
C1 6⊆ C2

I Find an at most linear implementation for C1 ⊆ C2 (recall marking
algorithms)

25

Multi-Platform Code Management, Kevin Jameson, 1994

The Dimensions: Products

I shared files (e.g., parser)

I several developers

I several versions (e.g., two watched literals)

I several configurations (e.g., debug/optimized)

I several programs (e.g., SAT, normalization)

I several platforms

26

Multi-Platform Code Management, Kevin Jameson, 1994

The Don’ts

I #ifdef

I excessive makefiles

I code duplication

The Dos

I keep it simple

I share what can be shared

I separate what is different

27

Multi-Platform Code Management, Kevin Jameson, 1994

Key Idea: Two Level Set Up

I a directory structure holding exactly what is needed for one product:
sources, makefiles, libraries, test bed, etc.

I dynamic generation of this structure out of a given template
structure

The Concept

Solve the problem by code organization and standard processes.

28

Multi-Platform Code Management: Directory Structure

CMTREE - Code Management Tree

I hold all makefile templates

CMHTREE - Code Management Help Tree

I tools for maintaining the trees

I test data/procedures

I actual releases

Source Trees

I pi - platform independent source code

I pd - platform dependant source code

I pid - mixed source code

29

Multi-Platform Code Management: CMTREE

Makefile Structure

I makefile - top-level, includes all others , simple tasks

I makefile.tre - defines standard macros pointing to locations in the
different trees

I platform-name.plt - defines platform specific information

I imports.imp - program specific information, get the source

I makefile.pi/pd/pid - dependency rules for the software

I makefile.llb/xxe/sse - building libraries, executables, script products

CMTREE

CMTREE

|

- - PLT

|

|- SUNOS.PLT

|

|- X86LINUX.PLT

31

Multi-Platform Code Management: Processes

Simple Start

I makenode - open node for programming

I getmakes - fetch and compose the makefile(s) for the node

I make import - fetch the sources

I start working

32

