Advanced C Programming

Memory Management |l
(malloc, free, alloca, obstacks, garbage collection)

Sebastian Hack
hackQcs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

16.12.2008

I COMPUTER SCIENCE

Contents

Memory Allocation
alloca / Variable length arrays
malloc and free
Memory Allocation in UNIX

Problems of Memory Allocation

Fragmentation
» Not being able to reuse free memory
» Free memory is split up in many small pieces
» Cannot reuse them for large-piece requests

» Primary objective of today's allocators is to avoid fragmentation

Locality
» Temporal and spacial locality go along with each other
» Memory accesses near in time are also near in space

» Try to serve timely near requests with memory in the same region
1= | ess paging

» Memory allocation locality not that important for associative caches
1= Enabling locality by the programmer more important

Practical Considerations (see [Lea])
A good memory allocator needs to balance a number of goals:
Minimizing Space
» The allocator should not waste space

» Obtain as little memory from the system as possible
» Minimize fragmentation
Minimizing Time
» malloc, free and realloc should be as fast as
possible in the average case
Maximizing Tunability
» Configure optional features
(statistics info, debugging, ...)
Maximizing Locality
» Allocate chunks of memory that are typically used
together near each other
» Helps minimize page and cache misses during
program execution

Minimizing Anomalies
» Perform well across wide range of real loads

Approaches

» Allocate and Free

> Allocating and freeing done by the programmer
> Bug-prone: Can access memory after being freed
> Potentially efficient: Programmer should know when to free what

» Garbage Collection
> User allocates
> System automatically frees dead chunks
> Less bug-prone
> Potentially inefficient:
Overhead of the collection, many dead chunks

» Region-based approaches

> User allocates chunks inside a region
> Only the region can be freed

> Efficiency of allocate and free
Slightly less bug-prone

> many dead chunks

v

Allocation on the stack

vV v v v

If you know that the allocated memory will be only used during life
time of a function

Allocate the memory in the stack frame of the function
Allocation costs only increment of stack pointer

Freeing is “free” because stack pointer is restored at function exit
Don't do it for recursive functions (stack might grow too large)

void foo(int n) {
int *arr = alloca(n * sizeof (*arr));

}

Only do this if you do not statically know the size of the memory to
allocate

alloca is strongly machine and compiler dependent and not POSIX!
= Only use if absolutely necessary

In C99, use VLAs instead (unfortunately not in C++)

Malloc and free

In every execution of the program, all allocated memory should be freed

» Make it proper = make it more bug-free
» Never waste if you don't need to

» You might make a library out of your program
» People using that library will assume proper memory management

Purpose of malloc, free
» Get memory for the process from OS (mmap, sbrk, ...)

» Manage freed memory for re-utilization

~

Getting Memory from the OS (UNIX)

Unices usually provide two syscalls to enlarge the memory of a process:

> brk

>

>

Move the end of the uninitialized data segment
At the start of the program, the break is directly behind the
uninitialized data segment of the loaded binary

> Moving the break adds memory to the process
» malloc has to set the break as tightly as possible

5 deal with fragmentation

> Reuse unused memory below the break
> brk is fast

> mmap

>

>
>
>

Map in pages into a process’ address space

Finest granularity: size of a page (usually 4K)

More overhead in the kernel than brk

Used by malloc only for large requests (> 1M)

= Reduces fragmentation: pages can be released independently from

each other

Contents

The Doug Lea Allocator
Binning
allocate
free
Chunk Coalescing

The Doug Lea Allocator (DL malloc)

v

Base of glibc malloc
One of the most efficient allocators

v

v

Very fast due to tuned implementation

v

Uses a best-fit strategy:
15 Re-use the free chunk with the smallest waste

v

Coalesces chunks upon free
= Reduce fragmentation

v

Uses binning to find free chunks fast

Smallest allocatable chunk:

> 32-bit system: 8 bytes 4+ 8 bytes bookkeeping
> 64-bit system: 16 bytes + 16 bytes bookkeeping

v

Binning

» Goal: Find the best-fitting free chunk fast
> Solution: Keep bins of free-lists/trees
» Requests for small memory occur often

> Split bins into two parts

> 32 exact-size bins for everything up to 256 bytes
» 32 logarithmic scaled bins up to 2Pt =

32 fixed-size bins 32 variable-size bins

—
o))

| 24 |- 248|256 [384] - [8M [Rest]

free-list

Searching the best-fitting Chunk

Small Requests < 256 bytes

vV Yy vy

Check if there is a free chunk in the corresponding exact-size bin
If not, look into the next larger exact-size bin and check there

If that bin had no chunk too, check the designated victim (dv) chunk
If the dv chunk was not sufficiently large

> search the smallest available small-size chunk
> split off a chunk of needed size
> make the rest the designated victim chunk

If no suitable small-size chunk was found
> split off a piece of a large-size chunk
» make the remainder the new dv chunk

Else, get memory from the system

Remark

Using the dv chunk provides some locality as unserved requests get
memory next to each other

Searching the best-fitting Chunk
Large Requests > 256 bytes
» Non-exact bins organize the chunks as binary search trees
» Two equally spaced bins for each power of two
» Every tree node holds a list of chunks of the same size
| 4

Tree is traversed by inspecting the bits in size
(from more significant to less significant)

» Everything above 12M goes into the last bin (usually very rare)
32 fixed-size bins 32 variable-size bins
|16 [24 |-+ |248]256[384 | -+ | 8M |Rest]

]

free-list

10M-12M

What happens on a free?

» Coalesce chunk to free with surrounding free chunks

» Treat special cases if one of the surrounding chunks is dv, mmap'ed,
the wilderness chunk

> Reinsert the (potentially coalesced) chunk into the free list/tree of
the according bin

» Coalescing very fast due to “boundary tag trick”:
Put the size of a free chunk its beginning and its end

Chunk Coalescing

> If a chunk is freed it is immediately coalesced with free blocks
around it (if there are any)

Free blocks are always as large as possible

Avoid fragmentation

Faster lookup because there are fewer blocks

Invariant: The surrounding chunks of a chunk are always occupied

vvyyvyy

an allocated | size/statis=innse
chunk

... User data space ...

S1Ze

stzefstatns=iree
a freed
chunk pointet to next chunk in bin

polnter to previous chunk in bin

anused space ...

E1Ze

szefstatis=innse
an allocated
chunk uset data

s1ze

other chunks

wilderness sizefstatis=free

chunk

i1Ze

end of available memoty

Contents

Region-based memory management
Obstacks

Region-based Memory Allocation

Get a large chunk of memory
Allocate small pieces out of it

Can free only the whole region

vV v v v

Not particular pieces within the region

Advantages:
» Fast allocation/de-allocation possible
» Engineering
> Can free many things at once
> Very good for phase-local data
(data that is only used in a certain phase in the program)

> Think about large data structures: graphs, trees, etc.
Do not need to traverse to free each node

Disadvantages:

» Potential large waste of memory

Obstacks (Object Stacks)

Introduction

v

Region-based memory allocation in the GNU C library

v

Memory is organized as a stack:

> Allocation/freeing sets the stack mark
> Cannot free single chunks inside the stack

v

Can be used to “grow” an object:
Size of the object is not yet known at allocation site

v

Works on top of malloc

Allocation /Deallocation

void test(int n) {
struct obstack obst;
obstack_init (&obst);

/* Allocate memory for a string of length n-1 x/
char *str = obstack_alloc (&obst, n * sizeof (str[0]));

/* Allocate an array for n nodes x*/
node_t **nodes = obstack_alloc(&obst, n * sizeof (nodes[0]));

/* Store the current mark of the obstack */
void *mark = obstack_base (&obst);

/* Allocate the nodes */
for (i = 0; i < n; i++)
nodes[i] = obstack_alloc (&obst, sizeof (node[0]));

/* All the marks are gone */
obstack_free (&obst, mark);

/* Everything has gone */
obstack_free (&obst, NULL);

Growing an obstack

>

int

Sometimes you do not know the size of the data in advance
(e.g. reading from a file)

Usually, you to realloc and copy
obstacks do that for you

Cannot reference data in growing object while growing
addresses might change because grow might copy the chunk

Call obstack_finish when you finished growing
Get a pointer to the grown object back

*read_ints (struct obstack *obst, FILE xf) {
while (!feof(f)) {

int x, res;

res = fscanf (f, "%d4d", &x);

if (res == 1)
obstack_int_grow (obst, x);
else
break;

}

return obstack_finish(obst);

Contents

Garbage Collection in C

21

Garbage Collection

» Garbage collection is the automatic reclamation of memory that is
no longer in use
> “Write mallocs without frees”
» Basic principle:
» At each moment we have a set of roots into the heap:
pointers in registers, on the stack, in global variables
> These point to objects in the heap
which in turn point to other objects
All objects and pointers form a graph
Perform a search on the graph starting from the roots
All non-reachable objects can no longer be referenced
Their memory can thus be reclaimed

» Major problems for C/C++:

> Get all the roots
> Determine if a word is a pointer to allocated memory

vVYyVvVy

The Boehm-Demers-Weiser Collector [Boehm]

Compiler-independent implementation of a C/C++ garbage collector
Can co-exist with malloc = keeps its own area of memory

Simple to use: Exchange malloc with GC_malloc

vV v v v

Collector runs in allocating thread: collects upon allocation

v

Uses mark-sweep allocation:
1. Mark all objects reachable from roots
2. Repeatedly mark all objects reachable from newly marked objects
3. Sweep: Reuse unmarked memory = put into free lists

v

Allocation for large and small objects is different:
> Allocator for small objects gets a “page” from the large allocator
> Has separate free lists for small object sizes
> Invariant: All objects in a page have the same size

Getting the Roots

» Roots are in:
> Processor's registers
> Values on the stack
> Global variables (also dynamically loaded libraries!)
» Awkwardly system dependent
> Need to be able to write registers to the stack (setjmp)
> Need to know the bottom of the stack
> Quote from Boehm'’s slides: “You don’t wanna know"

Checking for Pointers

vV v v v

Is 0x0001a65a a pointer to an allocated object?

Compare word against upper and lower boundaries of the heap
Check if potential pointer points to a heap page that is allocated

Potentially, the pointer points in the middle of the object
= fixup required to get object start address

Method is conservative:

Words might be classified although they are none

memory that is no longer in use might not be freed
However: Values used in pointers seldom occur as integers

A Critique of Custom Memory Allocation

>

Berger et al. [Berger 2002] compared custom allocation to the
Windows malloc and DL malloc

» Programs from the SPEC2000 benchmark suite and others
» Some having custom allocators, some using general-purpose

malloc/free

» Programs with GP-allocation spend 3% in memory allocator
» Programs with custom allocation spend 16% in memory allocator

» Almost all programs do not run faster with custom allocation

compared to DL malloc

» Only programs using region-based allocators are still faster

» DL malloc eliminates most performance advantages by custom

allocators

Conclusion

> Use region-based allocation (obstacks)

for engineering advantages and fast alloc/free

» When regions are not suitable, use DL malloc

A Critique of Custom Memory Allocation

Normalized runtime

Runtime - Custom Allocation Benchmarks

W Original E@Win32 B DLmalloc O Reaps |

. non-regions

regions

averages

References

B

[

Doug Lea
A memory allocator
http://g.oswego.edu/dl/html/malloc.html

Emery Berger, Benjamin Zorn, and Kathryn McKinley
Reconsidering Custom Memory Allocation, OOPSLA'02

http:
//www.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
Hans-J. Boehm

Conservative GC Algorithmic Overview
http://www.hpl.hp.com/personal /Hans_Boehm /gc/gcdescr.html

28

http://g.oswego.edu/dl/html/malloc.html
http://www.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
http://www.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf

Further Reading

ﬁ Paul Wilson
Uniprocessor Garbage Collection Techniques
ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps

@ Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles
Dynamic Storage Allocation: A Survey and Critical Review
http://www.cs.northwestern.edu/ pdinda/ics-s05/doc/dsa.pdf

ﬁ Hans-J. Boehm
The “Boehm-Demers-Weiser” Conservative Garbage Collector,
Tutorial ISMM'04
http://www.hpl.hp.com/personal /Hans_Boehm/gc/04tutorial.pdf

29

	Memory Allocation
	alloca / Variable length arrays
	malloc and free
	Memory Allocation in UNIX

	The Doug Lea Allocator
	Binning
	allocate
	free
	Chunk Coalescing

	Region-based memory management
	Obstacks

	Garbage Collection in C
	A Critique of Custom Memory Allocation
	Bibliography

