
Advanced C Programming
Memory Management II

(malloc, free, alloca, obstacks, garbage collection)

Sebastian Hack
hack@cs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

16.12.2008

computer science

saarland
university

1

Contents

Memory Allocation
alloca / Variable length arrays
malloc and free

Memory Allocation in UNIX

The Doug Lea Allocator
Binning
allocate
free
Chunk Coalescing

Region-based memory management
Obstacks

Garbage Collection in C

A Critique of Custom Memory Allocation

Bibliography

2

Problems of Memory Allocation

Fragmentation

I Not being able to reuse free memory

I Free memory is split up in many small pieces

I Cannot reuse them for large-piece requests

I Primary objective of today’s allocators is to avoid fragmentation

Locality

I Temporal and spacial locality go along with each other

I Memory accesses near in time are also near in space

I Try to serve timely near requests with memory in the same region
+ Less paging

I Memory allocation locality not that important for associative caches
+ Enabling locality by the programmer more important

3

Practical Considerations (see [Lea])
A good memory allocator needs to balance a number of goals:

Minimizing Space

I The allocator should not waste space
I Obtain as little memory from the system as possible
I Minimize fragmentation

Minimizing Time

I malloc, free and realloc should be as fast as
possible in the average case

Maximizing Tunability

I Configure optional features
(statistics info, debugging, . . .)

Maximizing Locality

I Allocate chunks of memory that are typically used
together near each other

I Helps minimize page and cache misses during
program execution

Minimizing Anomalies

I Perform well across wide range of real loads
4

Approaches

I Allocate and Free
I Allocating and freeing done by the programmer
I Bug-prone: Can access memory after being freed
I Potentially efficient: Programmer should know when to free what

I Garbage Collection
I User allocates
I System automatically frees dead chunks
I Less bug-prone
I Potentially inefficient:

Overhead of the collection, many dead chunks

I Region-based approaches
I User allocates chunks inside a region
I Only the region can be freed
I Efficiency of allocate and free
I Slightly less bug-prone
I many dead chunks

5

Allocation on the stack

I If you know that the allocated memory will be only used during life
time of a function

I Allocate the memory in the stack frame of the function

I Allocation costs only increment of stack pointer

I Freeing is “free” because stack pointer is restored at function exit

I Don’t do it for recursive functions (stack might grow too large)

void foo(int n) {

int *arr = alloca(n * sizeof (*arr));

...

}

I Only do this if you do not statically know the size of the memory to
allocate

I alloca is strongly machine and compiler dependent and not POSIX!
+ Only use if absolutely necessary

I In C99, use VLAs instead (unfortunately not in C++)

6

Malloc and free

In every execution of the program, all allocated memory should be freed

I Make it proper + make it more bug-free

I Never waste if you don’t need to

I You might make a library out of your program

I People using that library will assume proper memory management

Purpose of malloc, free

I Get memory for the process from OS (mmap, sbrk, . . .)

I Manage freed memory for re-utilization

7

Getting Memory from the OS (UNIX)

Unices usually provide two syscalls to enlarge the memory of a process:

I brk
I Move the end of the uninitialized data segment
I At the start of the program, the break is directly behind the

uninitialized data segment of the loaded binary
I Moving the break adds memory to the process
I malloc has to set the break as tightly as possible

+ deal with fragmentation
I Reuse unused memory below the break
I brk is fast

I mmap
I Map in pages into a process’ address space
I Finest granularity: size of a page (usually 4K)
I More overhead in the kernel than brk
I Used by malloc only for large requests (> 1M)

+ Reduces fragmentation: pages can be released independently from
each other

8

Contents

Memory Allocation
alloca / Variable length arrays
malloc and free

Memory Allocation in UNIX

The Doug Lea Allocator
Binning
allocate
free
Chunk Coalescing

Region-based memory management
Obstacks

Garbage Collection in C

A Critique of Custom Memory Allocation

Bibliography

9

The Doug Lea Allocator (DL malloc)

I Base of glibc malloc

I One of the most efficient allocators

I Very fast due to tuned implementation

I Uses a best-fit strategy:
+ Re-use the free chunk with the smallest waste

I Coalesces chunks upon free
+ Reduce fragmentation

I Uses binning to find free chunks fast

I Smallest allocatable chunk:
I 32-bit system: 8 bytes + 8 bytes bookkeeping
I 64-bit system: 16 bytes + 16 bytes bookkeeping

10

Binning

I Goal: Find the best-fitting free chunk fast

I Solution: Keep bins of free-lists/trees

I Requests for small memory occur often
I Split bins into two parts
I 32 exact-size bins for everything up to 256 bytes
I 32 logarithmic scaled bins up to 2pointer size

16 24 · · · 248 256 384 · · · 8M Rest

32 fixed-size bins 32 variable-size bins

fr
ee

-l
is

t

11

Searching the best-fitting Chunk
Small Requests < 256 bytes

I Check if there is a free chunk in the corresponding exact-size bin

I If not, look into the next larger exact-size bin and check there

I If that bin had no chunk too, check the designated victim (dv) chunk

I If the dv chunk was not sufficiently large
I search the smallest available small-size chunk
I split off a chunk of needed size
I make the rest the designated victim chunk

I If no suitable small-size chunk was found
I split off a piece of a large-size chunk
I make the remainder the new dv chunk

I Else, get memory from the system

Remark

Using the dv chunk provides some locality as unserved requests get
memory next to each other

12

Searching the best-fitting Chunk
Large Requests ≥ 256 bytes

I Non-exact bins organize the chunks as binary search trees

I Two equally spaced bins for each power of two

I Every tree node holds a list of chunks of the same size

I Tree is traversed by inspecting the bits in size
(from more significant to less significant)

I Everything above 12M goes into the last bin (usually very rare)

16 24 · · · 248 256 384 · · · Rest

32 fixed-size bins 32 variable-size bins

8M

8M–10M

8M–9M 9M–10M

10M–12M

free-list

13

What happens on a free?

I Coalesce chunk to free with surrounding free chunks

I Treat special cases if one of the surrounding chunks is dv, mmap’ed,
the wilderness chunk

I Reinsert the (potentially coalesced) chunk into the free list/tree of
the according bin

I Coalescing very fast due to “boundary tag trick”:
Put the size of a free chunk its beginning and its end

14

Chunk Coalescing
I If a chunk is freed it is immediately coalesced with free blocks

around it (if there are any)
I Free blocks are always as large as possible
I Avoid fragmentation
I Faster lookup because there are fewer blocks
I Invariant: The surrounding chunks of a chunk are always occupied

15

Contents

Memory Allocation
alloca / Variable length arrays
malloc and free

Memory Allocation in UNIX

The Doug Lea Allocator
Binning
allocate
free
Chunk Coalescing

Region-based memory management
Obstacks

Garbage Collection in C

A Critique of Custom Memory Allocation

Bibliography

16

Region-based Memory Allocation

I Get a large chunk of memory

I Allocate small pieces out of it

I Can free only the whole region

I Not particular pieces within the region

Advantages:

I Fast allocation/de-allocation possible

I Engineering
I Can free many things at once
I Very good for phase-local data

(data that is only used in a certain phase in the program)
I Think about large data structures: graphs, trees, etc.

Do not need to traverse to free each node

Disadvantages:

I Potential large waste of memory

17

Obstacks (Object Stacks)
Introduction

I Region-based memory allocation in the GNU C library

I Memory is organized as a stack:
I Allocation/freeing sets the stack mark
I Cannot free single chunks inside the stack

I Can be used to “grow” an object:
Size of the object is not yet known at allocation site

I Works on top of malloc

18

Allocation/Deallocation

void test(int n) {

struct obstack obst;

obstack_init (&obst);

/* Allocate memory for a string of length n-1 */

char *str = obstack_alloc (&obst , n * sizeof(str [0]));

/* Allocate an array for n nodes */

node_t ** nodes = obstack_alloc (&obst , n * sizeof(nodes [0]));

/* Store the current mark of the obstack */

void *mark = obstack_base (&obst);

/* Allocate the nodes */

for (i = 0; i < n; i++)

nodes[i] = obstack_alloc (&obst , sizeof(node [0]));

/* All the marks are gone */

obstack_free (&obst , mark);

/* Everything has gone */

obstack_free (&obst , NULL);

}

19

Growing an obstack

I Sometimes you do not know the size of the data in advance
(e.g. reading from a file)

I Usually, you to realloc and copy

I obstacks do that for you

I Cannot reference data in growing object while growing
addresses might change because grow might copy the chunk

I Call obstack finish when you finished growing
Get a pointer to the grown object back

int *read_ints(struct obstack *obst , FILE *f) {

while (!feof(f)) {

int x, res;

res = fscanf(f, "%d", &x);

if (res == 1)

obstack_int_grow(obst , x);

else

break;

}

return obstack_finish(obst);

}

20

Contents

Memory Allocation
alloca / Variable length arrays
malloc and free

Memory Allocation in UNIX

The Doug Lea Allocator
Binning
allocate
free
Chunk Coalescing

Region-based memory management
Obstacks

Garbage Collection in C

A Critique of Custom Memory Allocation

Bibliography

21

Garbage Collection

I Garbage collection is the automatic reclamation of memory that is
no longer in use

I “Write mallocs without frees”

I Basic principle:
I At each moment we have a set of roots into the heap:

pointers in registers, on the stack, in global variables
I These point to objects in the heap

which in turn point to other objects
I All objects and pointers form a graph
I Perform a search on the graph starting from the roots
I All non-reachable objects can no longer be referenced
I Their memory can thus be reclaimed

I Major problems for C/C++:
I Get all the roots
I Determine if a word is a pointer to allocated memory

22

The Boehm-Demers-Weiser Collector [Boehm]

I Compiler-independent implementation of a C/C++ garbage collector

I Can co-exist with malloc + keeps its own area of memory

I Simple to use: Exchange malloc with GC malloc

I Collector runs in allocating thread: collects upon allocation

I Uses mark-sweep allocation:

1. Mark all objects reachable from roots
2. Repeatedly mark all objects reachable from newly marked objects
3. Sweep: Reuse unmarked memory + put into free lists

I Allocation for large and small objects is different:
I Allocator for small objects gets a “page” from the large allocator
I Has separate free lists for small object sizes
I Invariant: All objects in a page have the same size

23

Getting the Roots

I Roots are in:
I Processor’s registers
I Values on the stack
I Global variables (also dynamically loaded libraries!)

I Awkwardly system dependent

I Need to be able to write registers to the stack (setjmp)

I Need to know the bottom of the stack

I Quote from Boehm’s slides: “You don’t wanna know”

24

Checking for Pointers

Is 0x0001a65a a pointer to an allocated object?

I Compare word against upper and lower boundaries of the heap

I Check if potential pointer points to a heap page that is allocated

I Potentially, the pointer points in the middle of the object
+ fixup required to get object start address

I Method is conservative:

I Words might be classified although they are none

I memory that is no longer in use might not be freed

I However: Values used in pointers seldom occur as integers

25

A Critique of Custom Memory Allocation
I Berger et al. [Berger 2002] compared custom allocation to the

Windows malloc and DL malloc
I Programs from the SPEC2000 benchmark suite and others
I Some having custom allocators, some using general-purpose

malloc/free
I Programs with GP-allocation spend 3% in memory allocator
I Programs with custom allocation spend 16% in memory allocator
I Almost all programs do not run faster with custom allocation

compared to DL malloc
I Only programs using region-based allocators are still faster
I DL malloc eliminates most performance advantages by custom

allocators

Conclusion

I Use region-based allocation (obstacks)
for engineering advantages and fast alloc/free

I When regions are not suitable, use DL malloc

26

A Critique of Custom Memory Allocation

Runtime - Custom Allocation Benchmarks

0

0.25

0.5

0.75

1

1.25

1.5

1.75

19
7.
pa
rs
er

bo
xe
d-
si
m

c-
br
ee
ze

17
5.
vp
r

17
6.
gc
c

ap
ac
he lc

c

m
ud
lle

N
on
-re
gi
on
s

R
eg
io
ns

N
o

r
m

a
li

z
e
d

 r
u

n
ti

m
e

Original Win32 DLmalloc Reaps

non-regions regions averages

(a) Normalized runtimes (smaller is better). Custom allocators often
outperform the Windows allocator, but the Lea allocator is as fast as
or faster than most of the custom allocators. For the region-based
benchmarks, reaps come close to matching the performance of the
custom allocators.

Space - Custom Allocator Benchmarks

0

0.5

1

1.5

2

19
7.
pa
rs
er

bo
xe
d-
si
m

c-
br
ee
ze

17
5.
vp
r

17
6.
gc
c

ap
ac
he lc

c

m
ud
lle

N
on
-re
gi
on
s

R
eg
io
ns

N
o

rm
a
li

z
e
d

 S
p

a
c
e

Original DLmalloc Reaps

non-regions regions averages

(b) Normalized space (smaller is better). We omit the Windows al-
locator because we cannot directly measure its space consumption.
Custom allocators provide little space benefit and occasionally con-
sume much more memory than either general-purpose allocators or
reaps.

Figure 5: Normalized runtime and memory consumption for our custom allocation benchmarks, comparing the original allocators

to the Windows and Lea allocators and reaps.

Runtime - Region-Based Benchmarks

0

0.5

1

1.5

2

2.5

lcc mudlle

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

Original WinHeap Vmalloc Reaps

4.3

Figure 6: Normalized runtimes (smaller is better). Reaps are

almost as fast as the original custom allocators and much faster

than previous allocators with similar semantics.

can provide both advantages (see lcc and mudlle). These space ad-

vantages are somewhat misleading. While the Lea allocator and

reaps add a fixed overhead to each object, regions can tie down ar-

bitrarily large amounts of memory because programmers must wait

until all objects are dead to free their region. In the next section,

we measure this hidden space cost of using the region interface.

7.3 Evaluating Region Allocation

Using the binary instrumentation tool we describe in Section 6.1,

we obtained two curves over allocation time [22] for each of our

benchmarks: memory consumed by the region allocator, and mem-

ory required when dead objects are freed immediately after their

last access. Dividing the areas under these curves gives us total

drag, a measure of the average ratio of heap sizes with and without

immediate object deallocation. A program that immediately frees

every dead object thus has the minimum possible total drag of 1.

Intuitively, the higher the drag, the further the program’s memory

consumption is from ideal.

Figure 7(a) shows drag statistics for a wide range of benchmarks,

including programs using general-purpose memory allocators. Pro-

grams using non-region custom allocators have minimal drag, as do

the bulk of the programs using general-purpose allocation, indicat-

ing that programmers tend to be aggressive about reclaiming mem-

ory. The drag results for 255.vortex show either that some program-

mers are not so careful, or that some programming practices may

preclude aggressive reclamation. The programs with regions con-

sistently exhibit more drag, including 176.gcc (1.16), and mudlle

(1.23), and lcc has very high drag (3.34). This drag corresponds to

an average of three times more memory consumed than required.

In many cases, programmers are more concerned with the peak

memory (footprint) consumed by an application rather than the av-

erage amount of memory over time. Table 4 shows the footprint

when using regions compared to immediately freeing objects af-

ter their last reference. The increase in peak caused by using re-

gions ranges from 6% for 175.vpr to 63% for lcc, for an average of

23%. Figure 7(b) shows the memory requirement profile for lcc,

demonstrating how regions influence memory consumption over

time. These measurements confirm the hypothesis that regions can

lead to substantially increased memory consumption. While pro-

grammers may be willing to give up this additional space in ex-

change for programming convenience, we believe that they should

not be forced to do so.

7.4 Experimental Comparison to Previous Work

In Figure 6, we present results comparing the previous allocators

that provide semantics similar to those provided by reaps (see Sec-

tion 2). Windows Heaps are a Windows-specific interface provid-

ing multiple (but non-nested) heaps, and Vmalloc is a custom al-

location infrastructure that provides the same functionality. We

present results for lcc and mudlle, which are the most allocation

intensive of our region benchmarks. Using Windows Heaps in

9

27

References

Doug Lea
A memory allocator
http://g.oswego.edu/dl/html/malloc.html

Emery Berger, Benjamin Zorn, and Kathryn McKinley
Reconsidering Custom Memory Allocation, OOPSLA’02
http:
//www.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf

Hans-J. Boehm
Conservative GC Algorithmic Overview
http://www.hpl.hp.com/personal/Hans Boehm/gc/gcdescr.html

28

http://g.oswego.edu/dl/html/malloc.html
http://www.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
http://www.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf

Further Reading

Paul Wilson
Uniprocessor Garbage Collection Techniques
ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles
Dynamic Storage Allocation: A Survey and Critical Review
http://www.cs.northwestern.edu/ pdinda/ics-s05/doc/dsa.pdf

Hans-J. Boehm
The “Boehm-Demers-Weiser” Conservative Garbage Collector,
Tutorial ISMM’04
http://www.hpl.hp.com/personal/Hans Boehm/gc/04tutorial.pdf

29

	Memory Allocation
	alloca / Variable length arrays
	malloc and free
	Memory Allocation in UNIX

	The Doug Lea Allocator
	Binning
	allocate
	free
	Chunk Coalescing

	Region-based memory management
	Obstacks

	Garbage Collection in C
	A Critique of Custom Memory Allocation
	Bibliography

