
Advanced C Programming
Editors, Debug Macros

Sebastian Hack
hack@cs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

02.12.2008

computer science

saarland
university

1

Contents

Editors
XEmacs
Vim

Debugging & Checking Code
Debug Message Macros
Invariant Checking

2

XEmacs

XEmacs: http://www.xemacs.org/

I evolved from GNU emacs

I differences between emacs/xemacs mainly only show up for
advanced users

I “there are currently irreconcilable differences in the views about
technical, programming, design and organizational matters between
Richard Stallman (RMS) and the XEmacs development team which
provide little hope for a merge to take place in the short-term future”

I self-documenting (<CTRL-h>), customizable, extensible real-time
editor mainly written in LISP

3

http://www.xemacs.org/

XEmacs

Basic Concepts

I Buffer: a region of memory holding characters, basic editing unit

I File: a region of disk space holding characters

I Window: rectangular region in which a buffer is displayed

4

XEmacs

Identation

I <TAB> does identation at current cursor position

I <CTRL-META-q> idents a balanced brace

I <CTRL-META-\ > idents a region that can be marked by the
mouse are a <CTRL-SPACE> (start region) moving sequence or
<CTRL-META-h> for the current function

I the default indentation can be adjusted

5

XEmacs

Tagging

I after building a TAG database using the command “etags ∗.[ch]”

I <META-.> jumps to the current function’s definition

I <CTRL-c s c> finds/jumps to callers of the current function

6

XEmacs

Debugging

I <META-x gdb> activates gdb inside xemacs

I <CTRL-x SPACE> creates a breakpoint in any source file

I then sveral gdb commands are available as keystrokes: <META-i>
executes one instruction, <META-c> continues the program, . . .

7

XEmacs

Navigation: Forward (analogous backward, deleting, marking)

I <CTRL-f> go forward one letter

I <META-f> go forward one word

I <CTRL-e> go forward to end of line

I <META-x c-end-of-defun> go forward to end of definition
(key binding)

I <CTRL-v> go forward one page

I <META->> go forward end of buffer

8

XEmacs

Diff Support for Files and Buffers

Commenting

I <CTRL-c CTRL-c> comment region

I <CTRL-u CTRL-c CTRL-c> uncomment region

Vertical Editing

I <CTRL-x r k> kill rectangle

I <CTRL-x r y> yank rectangle

I <CTRL-x r t> string add rectangle

9

XEmacs

Basic Keyboard Macro Definitions

I <CTRL-x (> <define your macro> <CTRL-x)>

I <CTRL-x e> repeat recorded macro

I <CTRL-x CTRL-k b> define a key sequence for the macro

I <M-x name-last-kbd-macro> name last macro

I <M-x insert-kbd-macro> insert LISP code for macro identified by
name into buffer

10

Vi(m): Basic concepts

I “Visual” extension of line editor ex
+ Two editors in one

I Mode-based editing: Insert mode, Normal mode

I Normal mode is for navigating and searching

I Insert mode for changing

I Editing is “transactional”
Can be easily undone, replayed, recorded, etc.

I Advantage: “Transaction granularity” is controllable by user

I Editing commands use normal keys of the keyboard

I To enter edit mode:
I i (insert) Start inserting at cursor
I I Insert at start of line
I R OverwRite
I A (append) Goto end of line and insert
I s (substitute) Delete current character and insert
I C Delete from cursor to rest of line and insert

I Press <ESC> to exit insert mode

12

Vi(m): Movement

I Movement h, j, k, l is left, down, up, right

I Handy: Move on text-element basis

Hello , this is just some text.

| | || | | X| ||| |

0 ^ ||ge b e w|| g_ $

Fj| |fx

Tj tx

I Many commands can be preceded by a count that specifies how
often the command is executed

I Movement can be combined with editing
I dw Delete until start of next word
I 3dw Do so 3 times
I ct{ Delete everything up to the next open brace (excluded) and go

to insert
I yf: Copy everything up to the next : into the clipboard

14

Marks and Registers
Marks

I Use marks to navigate

I 26 inner-file marks (a-z)

I 26 across-file marks (A-Z)

I mx to set mark x to current position

I ‘x to jump to position in mark

I ‘. jump to place of last change (very useful!)

I ‘x is a movement command; can combine it with editing:
+ e.g. d‘a Delete everything up to mark a

I Visual mode selections define marks ’< and ’>

Registers

I Containers for Text

I Yank and paste to/from them

I "xy[motion] yank to register x

I "xp[motion] paste from register x

I Don’t need to specify the default register
16

Vim for Programmers

I =[movement] Indents the specified text

I A simple :make invokes make

I Parses error list afterwards
I Can go through one by one

I Simple Navigation
I [{ and]} to jump to enclosing opening (closing) brace
I { and } to go to next paragraph
I gd to goto definition of local variable
I % to jump to matching part (of brace)

F works with all kinds of parens, braces, . . .
F #if #endif
F Install matchit.vim for more

I Tags
I Use ctags -R * to generate a tags file
I Put a tags rule in your Makefile
I Vim loads it automatically
I Use C-] to go to definition of symbol
I Use C-t to go back

18

Macros

I You can define macros a-z

I Start recording macro x with qa

I Compose a sequence of events

I Stop recording by hitting q again

I Execute the macro with @x

I And re-execute the last macro with @@

I Of course you can use that with a count: 25@@

19

Nice Helpers

I . repeats last command

I rX replaces the current character X without going to insert mode

I changes the case of current char or selection

I J join two lines

I o (O) start a new line below (above) the current one

I Repeating some commands apply them on a line: yy, cc, dd, ==

I Search is also movement: my_text
+ d/my_text deletes everything up to the next hit on my_text

I x deletes character: xp exchanges two of them; logical!

I u undo is your friend!

I v and V for visual selection mode (select text with the cursor)

I C-v for rectangular visual selection mode

I C-p autocompletes based on text above

I Vim 7 also has some context-sensitive completion mapped on C-x
C-o
remap to C-Space: inoremap <Nul> <C-x><C-o>

21

Contents

Editors
XEmacs
Vim

Debugging & Checking Code
Debug Message Macros
Invariant Checking

22

Debug Macros

I The best debugger is printf :-)

z = x + y;

printf("z = %d\n", z);

I However, we do want to
I have only certain printfs of parts that interest us
I not have all printfs in the release code + slow

z = x + y;

#ifdef DEBUG_MODULE_A

printf("z = %d\n", z);

#endif /* DEBUG_MODULE_A */

I But, we do not want write these ifdefs all over the place

I Something more like

z = x + y;

debug_module_a("z = %d\n", z);

or

debug(module_a , "z = %d\n", z);

24

Debug Macros

I Because we want no overhead in the release build,
debug must be a macro

I Put it in uppercase

z = x + y;

DBG("z = %d\n", x + z);

I Not very portable because requires C99 vararg macros

I A better way:

z = x + y;

DBG(("z = %d\n", x + z));

I How does the declaration look like?

#ifdef PRGDEBUG

#define DBG(x) printf x

#else

#define DBG(x) /* nothing */

#endif

I Only way to write downward-compatible vararg macros?

26

C90 vararg Macros

I There is another way how you can write

DBG("z = %d\n", z);

I Define DBG as follows

#ifdef PRGDEBUG

#define DBG printf

#else

#define DBG 1 ? 0 :

#endif

I Disadvantage:
rely on the optimizer to remove code in non-debug case

I Or something even nastier

#define DBG(x) printf(x)

#define ARG(x) , (x)

DBG("z = %d" ARG(z));

28

Debug Macros
Adding Modules

I Add different debug “sources”

DBG((MOD_PARSER , "z = %d\n", z));

I can no longer use printf due to new argument

#ifdef PRGDEBUG

#define DBG(x) dbg_printer x

#else

#define DBG(x) /* nothing */

#endif

void dbg_printer(int module , const char *fmt , ...);

I How do we get file name and line number?

#define DBG(x) dbg_set_pos(__FILE__ , __LINE__), \

dbg_printer x

static const char *file_name;

static int line_num;

void dbg_printer(int module , const char *fmt , ...) { ... }

void dbg_set_pos(const char *file_name , int line_num) { ... }

I Not thread safe! + put static variables in TLS
30

Debug Macros
Elegantly adding Modules

I How to add new modules elegantly
I Add a file debug_modules.def

ADD_MOD(0, PARSER)

ADD_MOD(1, SOLVER)

ADD_MOD(2, PRINTER)

I “Generate” an enum with debug modules: debug.h

...

#define ADD_MOD(num , id) MOD_ ## id = 1 << num ,

enum _debug_modules_t {

#include "debug_modules.def"

};

#undef ADD_MOD

...

I Preprocessor yields

enum _debug_modules_t {

MOD_PARSER = 1 << 0,

MOD_SOLVER = 1 << 1,

MOD_PRINTER = 1 << 2,

};

32

Checking

About Debug Code

I find bugs as early as possible

I any debug code is READONLY!

I use debug code for function argument checking, main invariants

Debug Code Invocation

#ifdef SATCHECK

if (<read only condition >) {

<Start Debug Report Macro Call >

<Debug Report Message Macro Call >+

<End Debug Report Macro Call >

}

#endif

34

Checking Macros

Start Debug Report Macro

I flushes all output

I prints a generic error message to error out (tbd.) including file and
line number

Debug Report Message Macro

I accepts an arbitrary printf format string with arguments

I prints the message to error out

End Debug Report Macro

I flushes all output

I dumps a core iff SATDEBUG is set

I exits with failure

35

	Editors
	XEmacs
	Vim

	Debugging & Checking Code
	Debug Message Macros
	Invariant Checking

