
computer science

saarland
university

Sebastian Hack
Christoph Weidenbach

December 02, 2008

Tutorials for “Advanced C”
Exercise sheet 6

Exercise 6.1: (2 P)

Extend your Makefile with:

1. a target tags to build tag file.

2. a variable SATDEBUG that causes a debug version of the program to be built. When
the user says make SATDEBUG=1 a preprocessor variable SATDEBUG shall be defined in
all source files which causes debug macros to be activated. Furthermore, optimizations
shall be deactivated and debug symbols shall be included.

3. a variable SATCHECK that causes invariant checking code to be compiled into the pro-
gram. When the user says make SATCHECK=1 the preprocessor variable SATCHECK shall
be defined in all source files which causes check macros to be activated. Checking works
completely independent of debugging.

Exercise 6.2: (3 P)

Extend your SAT solver with debug macros as presented in this week’s lecture. Add the fol-
lowing extension: On each DBG(...) invocation, the programmer has to specify an importance
of the message. For example:

DBG((MOD_PARSER, 3, "read a number\n"));

Smaller numbers mean higher importance. Later on, when executing your program, the user
shall be able to specify that only messages with an importance higher than a certain level are
printed. The format of the debug messages should resemble:

module_name filename(line_number): message

For example:



PARSER parse.c(45): read a character

Add command line flags for the user to activate certain debug modules and to set the impor-
tance level. If the importance level is not specified by the user, 0 is assumed. If no module is
given, messages from all modules are printed.

The flags should be usable as follows:

• -m PARSER,SOLVER to select modules.

• -v 2 to set the importance.

Hint: Take a look at the POSIX function getopt(3)

Exercise 6.3: (5 P)

Implement the checking macros depicted in the lecture. Add to your SAT project an invariant
check that checks the consistency of your overall data structures before the selection of the next
propositional variable (and after backtracking). Document the invariant check. Demonstrate
your approach by letting it catch a bug you put in the program. So your deliverables are

• a .tgz archive of a consistent program including the macro module and the invariant
check

• a .tgz archive of a buggy version of the same program with an input file where the bug
is caught by the check

Submit your solution until the lecture on December 09.

Note: Joint solutions are not permitted.


